Availability: Άμεσα Διαθέσιμο

Explainable Artificial Intelligence in Medical Imaging. Fundamentals and Applications

ISBN: 9781032626338
ISBN: 9781032626338
Εκδόσεις:
Μορφή

Εκδόσεις

Ημ. Έκδοσης

Σελίδες

Έκδοση

Κύριος Συγγραφέας

,

Original price was: 104,00€.Η τρέχουσα τιμή είναι: 98,00€.(Περιλαμβάνεται ΦΠΑ 6%)

Διαθέσιμο - Προπαραγγελία|Διαθεσιμότητα: Υπό έκδοση

Περιγραφή

Artificial intelligence (AI) in medicine is rising, and it holds tremendous potential for more accurate findings and novel solutions to complicated medical issues. Biomedical AI has potential, especially in the context of precision medicine, in the healthcare industry’s next phase of development and advancement. Integration of Artificial Intelligence research into precision medicine is the future, however, the human component must always be considered.

Explainable Artificial Intelligence in Medical Imaging: Fundamentals and Applications focuses on the most recent developments in applying artificial intelligence and data science to health care and medical imaging. Explainable artificial intelligence is a well-structured, adaptable technology that generates impartial, optimistic results. New healthcare applications for explicable artificial intelligence include clinical trial matching, continuous healthcare monitoring, probabilistic evolutions, and evidence-based mechanisms. This book overviews the principles, methods, issues, challenges, opportunities, and the most recent research findings. It makes the emerging topics of digital health and explainable AI in health care and medical imaging accessible to a wide audience by presenting various practical applications.

Presenting a thorough review of state-of-the-art techniques for precise analysis and diagnosis, the book emphasizes explainable artificial intelligence and its applications in healthcare. The book also discusses computational vision processing methods that manage complicated data, including physiological data, electronic medical records, and medical imaging data, enabling early prediction. Researchers, academics, business professionals, health practitioners, and students can all benefit from this book’s insights and coverage.

Περιεχόμενα

1. Explainable Artificial Intelligence in Medicine: Social & Ethical Issues
Shahid Naseem, Tariq Mahmood, Hannan Bin Liaqat, Amjad R. Khan, and Umer Farooq

2. Explainable AI for Diagnosis of Pneumonia Using Chest X-Ray Images: Current Achievements and Analysis on Benchmark Datasets
Muhammad Mujahid, Tanzila S. Khan, Fetoun Alzahrani, Abrar Wafa, and Abeer Rashad Mirdad

3. Explainable AI for Medical Science: A Comprehensive Survey, Current Challenges, and Possible Directions
Deep Kothadiya, Chintan Bhatt, Amjad R. Khan, Amerah Alghanim, and Fatima Nayer Khan

4. Explainable Artificial Intelligence Techniques in Healthcare Applications
Hareem Ayesha, Sajid Iqbal, Mehreen Tariq, Abdullah Alaulamie, and Aiesha Ahmad

5. Automatic Detection of Leukemia Through Explainable AI-based Machine Learning Approaches: Directional Review
Rida Arif, Shahzad Akbar, Sahar Gull, Qurat Ul Ain, and Noor Ayesha

6. Improvement Alzheimer’s Segmentation by VGG16 and U-Net Autoencoder Techniques
Karrar A Kadhim, Farhan Mohamed, and Ghalib Ahmed Salman

7.  Skin Cancer Detection and Classification Using Explainable Artificial Intelligence for Unbalanced Data: State of the Art
Ahmad Bilal Farooq, Shahzad Akbar, Qurat ul Ain, Zunaira Naqvi, and Farwa Urooj

8. Enhancing Heart Disease Diagnosis with XAI-Infused Ensemble Classification
Naveed Abbas, Talha Tasleem, Abdul Hai, Zieb Rabie Alqahtani, and Bandar Ali Mohammed Alrami Alghamdi

9. Transparency in HealthTech: Unveiling the Power of Explainable AI
Shiza Maham, Abdullah Tariq, Muhammad Usman Ghani Khan, and Amjad R. Khan

10. Therapeutic Virtual Reality Exposure Therapies for Nyctophobia and Claustrophobia with Active Heart Rate Monitoring
Zubaira Naz, Ayesha Azam, Muhammad Usman Ghani Khan, and Noor Ayesha

11. Explainable Artificial Intelligence Based Machine Analytics and Deep Learning in Medical Science
Morteza Soltani, Mehdi Davari, Mina Bahadori, Ahmad Kokhahi, Mahsa Bahadori, and, Masoumeh Soleimani

12. Revolutionizing Prostate Cancer Diagnosis: Vision Transformers with Explainable Artificial Intelligence to Accurate and Interpretable Prostate Cancer Identification
Krunal Maheriya, Mrugendrasinh Rahevar, Martin Parmar, Deep Kothadiya, Atul Patel, and Amit Ganatra